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Demonstration of cluster-state shaping and quantum erasure for continuous variables
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We demonstrate experimentally how to remove an arbitrary node from a continuous-variable cluster state and
how to shorten any quantum wires of such a state. These two basic operations, performed in an unconditional
fashion, are a manifestation of quantum erasure and can be employed to obtain various graph states from an initial
cluster state. Starting with a sufficiently large cluster, the resulting graph states can then be used for universal
quantum information processing. In the experiment, all variations of this cluster shaping are demonstrated on a
four-mode linear cluster state through homodyne measurements and feedforward.
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I. INTRODUCTION

A one-way quantum computer uses a cluster state as
a resource [1,2]. For qubits, cluster states have a graph
structure where the nodes are qubits, while the bonds represent
controlled π -phase-shift interactions [1]. Instead of the com-
putational basis for a qubit (|0〉,|1〉), coordinate eigenstates
|x〉 for any real number x correspond to the computational
basis in the continuous-variable (CV) case. A very powerful
scheme for generating a large-scale but fixed CV cluster state
in just one time step was recently proposed in Ref. [3] using
optical frequency combs. Starting with such large-scale cluster
states enables one to use a top-to-bottom approach, in which
the initial state can be shaped and converted into a modified,
smaller cluster state suitable for a given quantum computation
task. In order to adapt the fixed initial cluster state to any
desired operation, we need to be able to flexibly shape the
cluster state.

For CV cluster states, the nodes are quantized optical modes
coupled through quantum nondemolition (QND) interactions
[2]. Once these cluster nodes are linked, they can be easily
decoupled by measurements in the computational basis and
feedforward, as we have reported for the CV case [4,5]. This
decoupling is a manifestation of a complete CV quantum
erasure which works independently of the input states for this
QND-type interaction. Only two basic shaping operations are
required to shrink a fixed large-scale cluster state and transform
it into an appropriate form for a desired quantum operation
[6]. One is the removal of unwanted nodes by measuring
the modes to be removed and performing feedforward on
the neighboring modes, at the same time breaking all bonds
between that node and the rest (here feedforward corresponds
to phase-space displacements depending on the homodyne
measurement results). The other operation is wire shortening
[6], which also removes modes from a cluster state but leaves
the neighboring modes connected in the resulting graph state.

In this article, we demonstrate unconditional cluster-state
shaping for CV cluster states, specifically, for a CV four-mode
linear cluster state. Similar to the qubit case, feedforward
corrections are essential to accomplish the cluster shaping.
However, so far, cluster shaping has not been demon-
strated in a deterministic and unconditional fashion since the

single-photon-based qubit proposals [7] and implementations
[8] are typically heralded, relying on postselection. In contrast,
the CV approach for creating and shaping cluster states does
not require any quantum memories for storage. The price for
this unconditionalness, however, is that the finitely squeezed
CV cluster states are intrinsically imperfect [2,9,10].

II. THEORY

Each quantum mode can be represented by a pair of
observables x̂ and p̂ in a Heisenberg picture, where these
operators are the real and imaginary parts of each mode’s
annihilation operator, â = x̂ + ip̂. The commutation relation
of these operators is [x̂i ,p̂j ] = iδij /2 with h̄ = 1/2; the
subscripts i and j refer to the ith and j th modes, respectively.
In quantum optics, these observables represent the electric
field amplitudes in two orthogonal quadratures of each spatial
mode.

CV cluster states are defined via the following stabilizer
combinations [9,11] (so-called nullifiers [6]):

(
p̂i −

∑
j∈Ni

x̂j

)
, ∀ i ∈ G. (1)

Here nullifiers mean that the states become zero eigenstates
of these quadrature combinations in the limit of infinite
squeezing. The modes of i ∈ G correspond to the nodes of
the graph G, while the modes of j ∈ Ni are the nearest
neighbors of the ith mode. The cluster state can be created
by preparing |p = 0〉 for each mode of i ∈ G and performing
QND interactions with modes of j ∈ Ni , where the unitary
operator for the QND interaction is Ûij = exp(2ix̂i x̂j ) [12].

With finite squeezing, the quadrature correlations are im-
perfect. As sufficient conditions for cluster-type entanglement,
we can use the following inequalities:

〈
�

(
p̂i −

∑
j∈Ni

x̂j

)2〉
<

1

2
, ∀ i ∈ G, (2)
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because for any i ∈ G and j ∈ Ni , we can derive〈
�

(
p̂i − x̂j −

∑
k∈Ni|j

x̂k

)2〉
+

〈
�

(
p̂j − x̂i −

∑
l∈Nj |i

x̂l

)2〉
< 1,

(3)

where Ni|j denotes the set of all neighbor modes of the ith
mode, except for the j th mode. This equation proves that the
ith and j th modes are entangled, according to the criteria of
Ref. [13].

We can reverse the QND interaction and restore one of two
unknown input states by using homodyne measurements and
feedforward [4,5]. This restoration also does not depend on
the specific interaction strength of the QND interaction. In
this case, the inverse QND interaction between the ith and j th
modes Û

†
ij = exp(−2ix̂i x̂j ) can be decomposed into a homo-

dyne measurement of the x quadrature of the j th mode with a
subsequent phase-space displacement Ẑi(xj ) = exp(−2ix̂ixj )
as feedforward to the ith mode, where xj is the measurement
result at the j th mode. Note that this measurement-based
reversibility is specific to QND, controlled-NOT, and controlled
π -phase-shift interactions.

We consider removing the j th mode from the cluster state
through the erasing technique [Fig. 1(a)]. In this case, x quadra-
ture of the j th mode is measured, and feedforward to any mode
of i ∈ Nj is performed. In the Heisenberg picture, the operators
after the feedforward are p̂′

i = Ẑ
†
i (−xj )p̂i Ẑ(−xj ) = p̂i − xj

for each i ∈ Nj . As a resulting state, we obtain〈
�

(
p̂′

i −
∑

k∈Ni|j

x̂k

)2〉
<

1

2
for i ∈ Nj,

(4)〈
�

(
p̂i −

∑
k∈Ni

x̂k

)2〉
<

1

2
for i ∈ G′ − Nj,

where G′ = G|j . Thus inequality (2) is preserved even after
the removal operations. Therefore the j th mode is removed
from the graph G, and cluster-type entanglement remains
present among the resulting graph G′.

The same technique can be also used for removing modes
while still preserving the connections or entanglement of their
neighbors, so-called wire shortening [6]. Here we consider
the modes 1, 2, 3, and 4 in a cluster state constituting a wire
from 1 to 4, N2 = {1,3} and N3 = {2,4}, while the first mode
and the fourth mode are not neighbors, as shown in Fig. 1(b).
The wire shortening requires that there are no other neighbor
modes of either the second or third mode, but this requirement
can be easily met by removing such modes prior to the wire
shortening. With local phase shifts of {π,−π/2,π/2,0} on
each {1,2,3,4}th mode, the wire becomes a ring [14]. Thus
shortening of this wire corresponds to removing the second
and third modes from the ring. In the case of the ring, this
operation is done by measuring x quadratures of the second
and third modes and performing feedforward to the fourth
and first modes, Ẑ4(−x2) and Ẑ1(−x3). In the case of the
wire, the operation is equivalent to measuring p̂2 and p̂3 and
performing Ẑ4(−p2) and Ẑ1(−p3); as a resulting state, we
obtain the cluster state with nullifiers (p̂1 + x̂4 − ∑

i∈N1|4 x̂i)
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FIG. 1. (Color online) Cluster-state shaping using measurement
and feedforward. Measuring x simply removes the modes, while
measuring p removes the modes with their quantum correlation
reconstructed in their neighbors.

and (p̂4 + x̂1 − ∑
j∈N4|1 x̂j ). Thus the first and fourth modes

are directly connected in the resulting state. Note that the signs
of x̂1 and x̂4 are opposite compared with Eq. (1) because of
the local phase shifts from the wire to the ring. With these
two transformations—removing unwanted modes and wire
shortening—we can generate many desired cluster states from
a sufficiently large two-dimensional lattice [6], as shown in
Fig. 1(c).
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FIG. 2. (Color online) Schematic of cluster state shaping and our
experimental implementation. OPO, subthreshold optical parametric
oscillator generating a squeezed vacuum state; LO, optical local
oscillator for homodyne detection.

We experimentally demonstrate the preceding shaping
operations on a four-mode linear cluster state. Two of the
following three experiments correspond to the removal of a
mode, either at the edge of the cluster or within the cluster state
[Figs. 2(a) and 2(b)]. The other experiment is wire shortening
[Fig. 2(c)].

III. EXPERIMENTAL SETUP

Figure 2(d) is a schematic of our experimental implemen-
tation of Fig. 2(a). This setup consists of generating a four-
mode cluster state, shaping via measurement and feedforward,
and verification measurement. As a light source, we utilize
a continuous-wave Ti:sapphire laser with a wavelength of
860 nm. Four squeezed-vacuum states are generated from
four subthreshold optical parametric oscillators (OPOs). Each
OPO is a bowtie-shaped cavity of 500 mm in length with
a 10 mm long PPKTP crystal as a nonlinear medium [15],
which is pumped by the second harmonic (430 nm in
wavelength) of Ti:sapphire output. We generate a four-mode
linear cluster state from four squeezed-vacuum states using
three beam splitters with beam-splitting ratios 20:80, 50:50,
and 50:50, respectively [9,14]. In this experiment, ±1 MHz
sidebands are quantum modes, while 98 kHz, 138 kHz, and
220 kHz modulations are used as phase references. Squeezing
levels of resource squeeze vacuum states are about −5 dB.
The quantum correlation of the initial cluster states satisfies
inequality (2):〈

�

(
p̂i −

∑
j∈Nj

x̂b

)2〉
< 0.25 ± 0.01 <

1

2

for i ∈ 1,2,3,4; (5)

thus any mode of this cluster state is inseparable from the other
modes.

In shaping operations, the modes being removed are
measured via homodyne detection. In order to perform
feedforward, the electric signal of the detection outcome is
amplified and drives an electro-optical modulator traversed
by an auxiliary beam with the power of 200 µW, which is
subsequently coupled with the neighbor mode of the measured
mode by an asymmetric beam splitter (99:1).

Modes to be measured and to be suffered from feedforward
depend on the shaping [Figs. 2(a)–2(c)]. For verification,
remaining modes are measured via other homodyne detections.
The measurement-outcome electric signals are combined and
then sent to a spectrum analyzer in order to check the
correlations between output quadratures. The powers of the
optical local oscillators (LOs) are about 5 mW. The detector’s
quantum efficiencies are greater than 99%, and the interference
visibilities to the LOs are, on average, 96%.

IV. EXPERIMENTAL RESULTS

First, we demonstrate removal of the edge fourth mode
from a four-mode linear cluster state, as shown in Fig. 2(a).
Here we measure x quadrature of the fourth mode and
perform feedforward to the third mode, Ẑ3(−x4), and we verify
entanglement among the remaining modes. Figures 3(a)–3(c)
show experimental results of variances of nullifiers (red
traces) suppressed below the cluster criteria inequality (2)
(blue lines):

〈�(p̂1 − x̂2)2〉 = 0.14 ± 0.01 < 1
2 ,

〈�(p̂2 − x̂1 − x̂3)2〉 = 0.22 ± 0.01 < 1
2 , (6)

〈�(p̂3 − x̂2)2〉 = 0.26 ± 0.01 < 1
2 .
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FIG. 3. (Color) Experimental results. (a)–(c) Quantum correla-
tions of remains of three modes in experiment represented in Fig. 2(a).
Experimental results (red traces) are compared with vacua states
(green traces), relative to two SNLs (=1/2, blue lines). (d), (e)
Remaining quantum correlations between the first and second modes
in the experiment of Fig. 2(b). (f) Resulting state of the fourth
mode. Variance of the squeezed quadrature (red trace), antisqueezed
quadrature (cyan), and observed variance with LO phase scanned
(gray) are compared with vacuum state (green). (g), (h) Recon-
structed quantum correlations in the wire-shortening experiment
represented in Fig. 2(c).

Therefore we successfully remove the fourth mode with
preserving entanglement among the remaining modes.

Next, we also remove the inward third mode from the
four-mode cluster state, as shown in Fig. 2(b). This time,
we measure x quadrature of the third mode and perform
feedforward to the second and fourth modes, Ẑ2(−x3) and
Ẑ4(−x3). Theoretically, the resulting states become a two-
mode cluster state (the first and second modes) and a squeezed

state (the fourth mode). As Figs. 3(d) and 3(e) show, we
observed quantum correlations between the first and second
modes:

〈�(p̂1 − x̂2)2〉 = 0.17 ± 0.01 < 1
2 ,

(7)〈�(p̂2 − x̂1)2〉 = 0.25 ± 0.01 < 1
2 .

Since they satisfy inequality (2), these modes are entangled.
Meanwhile, the fourth mode recovers its squeezed property, as
shown in Fig. 3(f). Variance of squeezed quadrature is −1.5 ±
0.2 dB relative to the SNL. Thus a two-mode cluster state and a
squeezed vacuum are obtained from a four-mode cluster state.

Finally, we perform wire shortening, as shown in Fig. 2(c).
Again, we start with the four-mode cluster state, and then we
measure p quadratures of the second and third modes and
perform feedforward to the fourth and first modes, Ẑ4(−p2)
and Ẑ1(−p3). Figures 3(g) and 3(h) show quantum correlations
of the resulting state. The reconstructed quantum correlations
are

〈�(p̂1 + x̂4)2〉 = 0.25 ± 0.01 < 1
2 ,

(8)〈�(p̂4 + x̂1)2〉 = 0.24 ± 0.01 < 1
2 ,

satisfying inequality (2). Therefore two modes are removed,
while their quantum correlations are preserved between their
neighbors.

Observable quantum correlations in Figs. 3(c), 3(e), 3(g),
and 3(h) are degraded by about 2 dB from the original resource
squeezing levels of −5 dB. The degradation corresponds to
a cost of the top-to-bottom approach because generating a
large cluster state requires extra QND interactions which are
imperfect due to finite-squeezed resources [16]. Nonetheless,
technological progress toward increasing the experimental
squeezing levels [17,18] will improve the cluster state shaping.

In conclusion, we have demonstrated experimentally how
to remove an arbitrary node from a continuous-variable cluster
state and how to shorten any quantum wires of such a state,
where both transformations are performed in unconditional
fashion via quantum erasure. In our experiment, all variations
of this cluster shaping have been demonstrated on a four-mode
linear cluster state. These two transformations can provide
flexibility of fixed large-scale cluster states and transform them
into appropriate forms for desired quantum operations.
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